An Introduction to Computer Simulation Methods Applications to Physical Systems: Part II [Harvey Gould, Jan Tobochnik] on *FREE* shipping on. An Introduction to Computer Simulation Methods. Article (PDF Available) · January with 8, Reads. Export this citation. Harvey Gould · Jan Tobochnik at. An Introduction to Computer Simulation Methods: Applications to Physical Systems,. 2nd Edition. Harvey Gould, Jan Tobochnik, Dawn C.

Author: Faujinn Arale
Country: Papua New Guinea
Language: English (Spanish)
Genre: Career
Published (Last): 7 December 2005
Pages: 439
PDF File Size: 4.14 Mb
ePub File Size: 17.68 Mb
ISBN: 457-9-40272-424-7
Downloads: 3758
Price: Free* [*Free Regsitration Required]
Uploader: Grozil

We study simple nonlinear deterministic models that exhibit chaotic behavior. Random ckmputer are introduced in the context of several simple physical systems, including random walks on a lattice, polymers, and diffusion controlled chemical reactions.

We will find compuher the use of the computer to do numerical experiments will help us gain insight into the nature of chaos. This file is included in the full-text index. We introduce the concept of fractal dimension and discuss several processes that generate fractal objects. We compute the electric fields due to static and moving charges, describe methods for computing the electric potential in boundary value problems, and solve Maxwell’s equations numerically.

We apply Newton’s laws of motion to planetary motion and other systems of a few particles and explore some of the counter-intuitive consequences of Newton’s laws. We then solve Euler’s equation of motion for rigid body dynamics using the quaternion representation of rotations.


We introduce some of the core syntax of Java in the context of simulating the motion of falling particles near the Earth’s surface. We introduce several geometrical concepts associated with percolation, including the percolation threshold, clusters, and cluster finding algorithms.

Select a document title to view a document’s information. We emphasize that the methods we have discussed can be applied to a wide variety fobochnik natural phenomena and contexts.

An Introduction to Computer Simulation Methods

We discuss several numerical methods needed to simulate the motion of particles using Newton’s laws and introduce interfaces, an important Java construct that makes it possible for unrelated objects to declare that they perform the same methods. The generation of random number sequences also is discussed.

A simple algorithm for solving first-order differential equations numerically also is discussed. We explore the behavior of oscillatory systems, including the simple harmonic oscillator, a simple pendulum, electrical circuits, and introduce the concept of phase space. We also introduce the ideas of critical phenomena in the context of the percolation transition, including critical exponents, scaling relations, and the renormalization group.

Introduction to Computer Simulation Methods

Some of the basic ideas of equilibrium statistical mechanics and kinetic theory are introduced. We introduce cellular automata, neural networks, genetic algorithms, and growing networks to explore the concepts of self-organization and complexity. This file has previous versions. We discuss numerical solutions of the time-independent and time-dependent Schroedinger equation siulation describe several Monte Carlo methods for estimating the ground state of quantum systems.


This material has 23 associated documents.

We simulate the dynamical behavior of many particle systems such as dense gases, liquids, and solids and observe their qualitative features. Download Updates and corrections to the third edition. The importance of computers in physics and the nature of computer simulation is discussed.

We study affine transformations in order to visualize objects in three dimensions.

Applications to the Ising model and various particle systems are discussed and more efficient Monte Carlo algorithms are introduced. Applications to sandpiles, fluids, earthquakes, and other areas are discussed.

We discuss how to simulate thermal systems tobocnnik a variety of Monte Carlo methods including the traditional Metropolis algorithm. Simple classical and Monte Carlo methods including importance sampling are illustrated in the context of the numerical evaluation of definite integrals. The nature of object-oriented programming and various computer languages also simulatuon considered.

We discuss the physics of wave phenomena and the motivation and use of Fourier transforms. We compute how objects appear at relativistic speeds and in the vicinity of a large spherically symmetric mass.

Frontmatter for an Introduction to Computer Simulation Methods.